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ABSTRACT
Text entry is a recurring task in mixed reality (MR) applications, and the ability of eyes-free text
entry methods to allow users to enter text without focusing on the input device is ideal and com-
pelling. However, existing eyes-free text entry methods leave much to be desired regarding effi-
ciency and accuracy. In this paper, we propose a new light-occlusion text entry method in MR
environment that uses dual thumb typing on a touchscreen. We design a partially visible keyboard
as visual feedback to improve user performance. In addition, we optimize the underlying keyboard
by collecting eyes-free typing data through a user study. The results show that our method has
high typing speed, low error rate, and is very novice-friendly. After a short training period, the
average typing speed of the novice group can reach 26.23 WPM (words per minute), while the
average typing speed of the potential expert group can reach 30.62 WPM.

KEYWORDS
Human-computer
interaction; mixed reality;
text entry; touchscreen;
occlusion

1. Introduction

In recent years, mixed reality (MR) has been widely used in
various fields such as healthcare, education, and entertain-
ment. With the in-depth application of mixed reality and
the introduction of related concepts such as “metaverse,” the
demand for text entry in mixed reality is also increasing,
such as note-taking, chatting, file name input, and input
tasks in games. Therefore, how to input text efficiently and
correctly in MR environments has become an important
issue. However, MR devices are usually mobile and wearable
and can only be operated by wearing HMDs and bare
hands. Therefore, it is more challenging to input text
efficiently.

Many researchers have explored the efficiency, learnability,
and usability of touchscreen-based eyes-free text entry meth-
ods. Blindtype (Y. Lu et al., 2017) is a touchscreen single-
thumb input method that utilizes muscle memory to achieve
input speeds of 17–23 WPM. i’s Free (S. Zhu et al., 2019) is a
touchscreen single-thumb text entry method that decodes the
user’s sliding gestures and has an input speed of 22 WPM.
TOAST (Shi et al., 2018) uses 10-finger for input and achieves
a speed of 44.6 WPM, but is not applicable to mobile applica-
tion scenarios. These techniques are a good validation of the
feasibility of eyes-free input on touchscreens. However, exist-
ing touchscreen-based approaches are either inefficient with
one-finger input, or 10-finger input which cannot be adapted
to mobile application scenarios.

Methods such as iText (X. Lu et al., 2021) are eyes-free
methods without any visual feedback about the keyboard,
which may confuse users and are not easy to correct.

Blindtype and text entry on Hololens have a full keyboard
for visual feedback, and it is difficult for users to efficiently
access the information of the real scene because of the large
occlusion. Another option for text entry in MR is the
hands-free method, and they usually use eye or head move-
ments to control the input. However, the main problem
with hands-free text entry is that it is difficult for the user
to master, and the typing speed is generally low. For
example, iText (X. Lu et al., 2021) uses the user’s eye move-
ments to enter text, and its maximum typing speed is only
13.76 WPM. RingText (Xu et al., 2019) uses the user’s head
movements to control the virtual cursor for text input, and
its maximum typing speed is only 13.24 WPM.

Inspired by the above work, we think of an idea of light-
occlusion text entry, i.e., first exploring using two thumbs
on a mobile phone touchscreen for eyes-free text entry and
then employing a light-occlusion keyboard visual feedback
design to make text entry easier. For example, when a user
replies to a message or transcribes text content while walk-
ing, they will not feel excessive visual occlusion from the
keyboard. We choose the mobile phone as the interaction
device that almost everyone has. Users can take out their
phones to enter text when needed, put their phones in their
pockets when not needed, free up their hands for other
things, and increase their typing speed compared to one-
handed typing.

In this paper, we propose an efficient light-occlusion text
entry method that allows users to enter text on a mobile
phone touchscreen using two thumbs. We designed a par-
tially visible keyboard that provides visual feedback and
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allows users to enter text with less occlusion. We collected
user typing data and used an intra-block optimization
approach to adjust the layout of the mobile phone’s underly-
ing keyboard. Finally, we designed a 5-day user study to
evaluate the performance of our approach. The results show
that our method is efficient, accurate, and novice-friendly.
Novice users can achieve an average of 26.23 WPM (s.e. ¼
0.69), and expert users can achieve an average of 30.62
WPM (s.e. ¼ 1.61) on the fifth day. The average NCER and
TER for the five days were 0.89% (s.e. ¼ 0.29%) and 3.24%
(s.e. ¼ 0.65%) respectively. After five days of training, novi-
ces improved their typing speed by 47%, while potential
experts improved their typing speed by 17%. Compared to
Blindtype and i’s Free, the typing speed of our method
increased by about 25% (Figure 1).

In summary, the contributions of our light-occlusion text
entry are as follows:

� to the best of our knowledge, we are the first ones to
explore two-thumb eyes-free input on the mobile phone
touchscreen;

� we designed a partially visible keyboard to provide visual
feedback for text entry and to reduce occlusion in
mixed-reality environments;

� we propose an intra-block optimization method to adjust
the layout of the underlying QWERTY keyboard on the
touchscreen;

� we designed a user study to evaluate the performance of
our text entry method.

2. Related work

In this section, we review the existing text entry methods in
MR and touchscreen-based text entry methods.

2.1. Text entry in MR

MR includes Virtual Reality and Augmented Reality (VR
and AR). Text entry methods in VR environments have
been widely explored. The most widely used interaction
device in existing VR systems is the controller. Many
researchers have explored the performance of controller-
based text entry methods. Flower Text Entry (Leng et al.,
2022) is a controller-based text entry method that uses a
flower-shaped keyboard and incorporates “3D hand

interaction.” In the HiPad (Jiang & Weng, 2020) method,
the user uses a controller with a circular touch screen for
virtual keyboard text entry. The layout of the HiPad’s virtual
keyboard is based on circles and squares with rounded cor-
ners, with the outer part of the circle being the area of the
six keys containing the letters of the alphabet. PizzaText (Yu
et al., 2018) is a method of text entry using a circular key-
board layout, which divides a circle into six blocks, each
containing four characters. Drum-like keyboards (Boletsis &
Kongsvik, 2019) treat the controller rays as “drumsticks”
that are moved downward to “press” the keys of the virtual
keyboard. While controller-based text entry methods are
widely used, these methods still require a full keyboard dis-
play to provide visual feedback and are not novice-friendly.
The KSPC (keystrokes per character) metric (MacKenzie,
2002) is defined as the average number of keystrokes
required to type each character in a particular language
using a particular input method. Optimally, the KSPC
should be 1, while controller-based methods have a KSPC
mostly greater than 1, which can lead to a decrease in input
speed.

Compared to VR applications, AR applications require
more mobility and hands-free operation from the user.
There are some text entry methods in AR environments
departing from the traditional concept of “typing by hand,”
which take advantage of other parts of the human body for
typing. SWIFTER (Pick et al., 2016) is a speech-based multi-
modal typing technique, and experimental results show that
it has good user acceptance. Adhikary and Vertanen (2021)
incorporate speech recognition techniques into mid-air typ-
ing. Their approach takes sentences as input and corrects
errors by selecting speech alternatives provided by a speech
recognizer. iText (X. Lu et al., 2021) is a text entry method
in AR environment by capturing the user’s eye positions
and eye movements. Gaze Speedup (Zhao et al., 2023) is a
mid-air gesture typing method that speeds up the gesture
cursor toward the user’s gaze fixation location. Lystbæk
et al. (2022) investigated gaze-assisted selection-based text
entry through the concept of spatial alignment of both
modalities. All these methods have great potential, but there
are still some problems: the eye-based methods need to be
improved in terms of typing speed and may cause visual
fatigue as well as motion sickness with prolonged use; the
speech-based methods achieve good performance but can be
problematic in certain situations, such as noise and privacy

Figure 1. In mixed reality, the user holds a mobile phone and applies our text entry method for typing.
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in shared environments (Shneiderman, 2000) and error cor-
rection problems (Vertanen, 2009). We propose an efficient
and accurate method that can be applied to both VR and
AR environments.

2.2. Text entry with touchscreen

Touchscreen-based approaches have shown good perform-
ance in mobile scenarios where the user inputs via an exter-
nal touchscreen. The current touchscreen technique focuses
on “eyes-free” methods. Typically, the most familiar method
of eyes-free text entry for users is to use a physical keyboard
for text entry, which can reach an input speed of 60–100
WPM. However, MacKenzie et al. (1999) found that the
speed of eyes-free text entry on a touchscreen can only
reach 20 WPM. Wang et al. (2013) found that the accuracy
rate of the eyes-free text entry method is only 85%.
Therefore, it is necessary to include some optimization algo-
rithms. Sun et al. (2019) explored the low occlusion
QWERTY soft keyboard using spatial landmarks, which
only give some dots and segments to indicate the position
of special characters in the QWERTY soft keyboard rather
than any part of the keyboard. After five 15-phrase typing
sessions, participants achieved 88.1%–92.8% of the full
QWERTY soft keyboard in terms of WPM.

Blindtype (Y. Lu et al., 2017) has two statistical-based
word-level decoding algorithms: “absolute algorithm” and
“relative algorithm.” Both algorithms achieve superior per-
formance with typing speeds of 17–23 WPM. i’s Free (S.
Zhu et al., 2019) is an algorithm for decoding user swipe
gestures. The technique vectorizes the user’s swipe gestures
and decodes them using a dynamic time-warping algorithm
(Sakoe & Chiba, 1978). The expert users can achieve a typ-
ing speed of 22 WPM after 10min of training. GlanceType
(Y. Lu et al., 2019) is a text entry method using a spilt soft
keyboard on a tablet computer. The evaluation shows that
the method substantially improves the performance of text
entry. Bi et al. (2012) explored a bimanual gesture soft key-
board on a tablet computer. The results indicated that the
new gesture keyboards were valuable complements to
unimanual gestures. Azenkot et al. (2012) proposed
Perkinput, a 6-bit Braille text entry on the touchscreen that
could reach 17.56 WPM for one hand and 38.0 WPM for
two hands after training. Southern et al. (2012) explored the
efficiency of the Perkinput on mobile phones, and after
20min of training, blind expert users reached 23.2 WPM.

Touchscreen-based typing is undoubtedly easy to learn
and highly efficient, but there are still problems with exist-
ing touchscreen-based methods. Some methods require a
full keyboard for visual feedback, and the keyboard interface
in the MR environment will affect the user’s experience.
Also, the absence of visual feedback from the keyboard may
confuse the user while typing. To balance the impact of the
above two types of keyboards on the visual experience, we
propose a method to display a partial keyboard for visual
feedback. We also notice that the current touchscreen-based
method is either a single-finger method on a small
touchscreen or a multi-finger method on a large

touchscreen, while we focus on using two thumbs to type
on a mobile phone, which considers both efficiency and
portability.

3. Design rationale

We aim to design a light-occlusion method that balances
speed, accuracy, and learnability while mitigating occlusion
problems caused by the keyboard interface in MR environ-
ments. We will introduce the design rationales from the fol-
lowing aspects.

3.1. Light occlusion

Many eyes-free text entry methods have been augmented
with visual feedback to improve input efficiency and accur-
acy. Blindtype (Y. Lu et al., 2017) incorporates a full
QWERTY keyboard to help users perform text entry. i’s
Free (S. Zhu et al., 2019) also displays a full QWERTY key-
board to help users recall after their fingers have been off
the screen for a period of time (300ms). These methods
require a full keyboard interface, thus preventing the user
from observing the scene in front of them during typing,
and these methods can be considered to provide fully
occluded keyboard interfaces. There are also methods (X. Lu
et al., 2021) that attempt to allow the user to type on an
imaginary keyboard, using a none-keyboard interface to
solve the problem. However, such methods would affect
users’ self-confidence in typing because they do not have
access to specific keystroke information during the typing
process.

Therefore, the main point when we design the keyboard
interface is a partially occluded interface. We consider
designing a partial keyboard visual feedback method, which
can avoid visual occlusion in MR environments, and at the
same time can achieve a similar or even better feedback
effect than the full QWERTY keyboard. Including spatial
landmarks can also be considered to improve the user’s con-
fidence when performing light-occlusion text entry.

3.2. Efficiency and accuracy

Related studies have shown that the accuracy rate of one-
handed eyes-free text entry is only 85% (Wang et al., 2013).
Therefore, we focus on two-handed typing, which can
improve the efficiency and accuracy rate to some extent. In
addition, reasonable visual guidance (e.g., displaying a par-
tial keyboard) can help the user confirm whether the current
selection is what he/she expects, and can improve efficiency
and accuracy by swiping on the screen to make corrections
when the user finds errors. Word correction can help users
automatically correct spelling errors, significantly reducing
the input error rate. When designing the text entry tech-
nique, we should consider integrating a word correction
function. Auditory feedback during text entry can also help
users confirm information and thus improve the accuracy
rate. Finally, the left and right key areas should be as bal-
anced as possible when typing with both hands to ensure
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that the number of letters is similar or equal. This can avoid
excessive fatigue in one hand when typing for long periods.

3.3. Familiarity

Many methods (Boletsis & Kongsvik, 2019; Leng et al., 2022;
Y. Lu et al., 2017; Shi et al., 2018; S. Zhu et al., 2019) have
demonstrated that the most familiar keyboard layout for
users is the QWERTY keyboard, and users can recall the
general layout of the QWERTY keyboard when they are typ-
ing. Therefore, we can consider the following three rules
when designing: firstly, the keys of the partial keyboard
should keep their relative positions, which allows users to
make corrections in time for error clicks; secondly, the dis-
play of the partial keyboard should be able to inform the
user of the current position of the touch point in the overall
keyboard, to facilitate the user’s position guidance during
continuous input; thirdly, when using a QWERTY keyboard
to input, the keyboard is usually divided into two parts: left-
hand area and right-hand area. We also take this into
account when optimizing the underlying keyboard. We div-
ided the underlying keyboard into six blocks, and we
adopted an intra-block modification strategy when applying
our keyboard optimization algorithm. In addition, our
method uses two thumbs for text entry, which is familiar to
users because they often use two thumbs to play games or
watch videos on their mobile phones.

4. Text entry leveraging touchscreen

In this section, we introduce the design ideas of the choice
of input devices, methods, and underlying keyboard design.

4.1. Input devices and methods

As already mentioned, we use a mobile phone as the input
device and choose two-thumb tapping, facilitating text entry
independent of time and place. The small size of mobile
phones means that 10-finger touch typing is impossible.
Instead, the input uses a single index finger, a single thumb,
or two thumbs (Ye et al., 2020). Azenkot and Zhai (2012)
reported that text entry speed reached approximately 36
WPM with a single index finger, 33 WPM with one thumb,
and 50 WPM with two thumbs. Two-thumb input is the
most efficient of these three input methods. In addition,
using a two-thumb keyboard makes good use of screen
space. Another benefit of two-thumb operation is mobility,
eliminating the need to move fingers from one side to the
other frequently. Tapping is still the preferred mode of
touchscreen keyboard operation for many users today.
Gesture keyboards should not be viewed as competition or
as a replacement for tapping. They should be compatible
with the tapping mode of the keyboard as well (Bi et al.,
2012). Moreover, the current mainstream swiping keyboards
are based on one hand, and two-handed gestures are chal-
lenging to implement.

4.2. Underlying keyboard design

The current mobile phone screen size is 6–7 inches, and the
screen aspect ratio is about 2:1. Our underlying keyboard
can automatically be adapted to the specific size and aspect
ratio of the mobile phone. We used a Redmi Note11 run-
ning Android 11 as the input device. The device screen size
is 6.6 inches and measures 163.56� 75.78mm. MR HMDs
and mobile phones communicate using sockets. For use on
large touchscreen devices such as the iPad, the split key-
board can be adopted (Bi et al., 2012; Y. Lu et al., 2019).
Our underlying keyboard is shown in Figure 2, which can
be roughly divided into four areas: the standard QWERTY
keyboard area, the space area, the backspace area, and the
word prediction/correction selection area. The underlying
keyboard is not displayed on the phone. We have also made
initial adjustments to the underlying keyboard. The keys of
“A,” “Z,” “L,” and “M” are stretched to the screen edges to
take advantage of the infinite size of the edges according to
Fitz’s law (MacKenzie, 2018). Word-level input correction is
one of the most widely used mechanisms in modern smart
keyboards. We use SymSpell (Garbe, 2019) to predict the
subsequent letters of a word based on the user’s input for
word completion, which can also correct spelling errors. It
improves typing speed and reduces error rates (Leng et al.,
2022). When the user types, the first three predicted results
are displayed in the candidate area. When the user selects a
word, the corresponding word in the candidate area will
be red.

5. Partially visible keyboard

In this section, we design a partial keyboard for visual feed-
back. As a partially occluded keyboard interface, we com-
pare it with non-occluded and fully occluded types of
keyboard interfaces to explore their impact on typing per-
formance. We designed a pilot user study for the evaluation.

5.1. Partial keyboard design

We have drawn on the idea of a circular keyboard layout of
related methods (Jiang & Weng, 2020; Leng et al., 2022; Xu
et al., 2019; Yu et al., 2018) and designed a partially visible
keyboard shown in Figure 3a. We display the currently
touched key in the center of the partial keyboard, and in the
surrounding six corners, we display the keys adjacent to the
touched key and no other keys. The number of displayed
keys is automatically adjusted when the touch point is on
the boundary of the full keyboard. Each key has a diameter
of 0.2 meters, and the keyboard is fixed 1.8 meters in front
of the camera.

There is considerable overlap between keys when users
perform eyes-free text entry, but this overlap is not more
than one key at most, i.e., errors always occur between adja-
cent keys. Given the above problem, as shown in Figure 3a,
our method provides the user with both the current key and
the surrounding keys, which can help the user quickly cor-
rect errors. If the current key is what the user expects, it can
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be confirmed directly, and if there is an error, then the
desired key can be selected by sliding the finger. When the
user’s finger leaves the screen, the key touched when the fin-
ger left will be entered.

5.2. Spatial landmarks

Inspired by previous work (Sun et al., 2019), we also add
simple lines and dots (as shown in Figure 3b) as spatial
landmarks on the partial keyboard. Our initial keyboard
interface had no boundary definitions, which could have led
to confusion. We add symmetrical white lines on the left
and right sides, which are the boundaries of the keyboard,
and two dots centered on the left area of the keyboard (the
position of “D”) and the right area of the keyboard (the pos-
ition of “J”), respectively.

5.3. Pilot user study 1: Evaluate the impact of visual
feedback on typing performance

In subsection 5.1 and subsection 5.2, we proposed a partial
keyboard along with spatial landmarks, whose primary pur-
pose is to balance accuracy and reduce visual occlusion. In
this section, we design a user study comparing it with other
common forms of virtual keyboards to evaluate the impact
of visual feedback on typing performance. We compare our
partial keyboard with three typical virtual keyboards: none-
keyboard, full-keyboard, and transparent full-keyboard, dem-
onstrating that our partial keyboard is more efficient while
effectively reducing occlusion.

5.3.1. User study design
5.3.1.1. Participants. Sixteen participants (10 males and six
females, aged 21–25) from our university were recruited for
this study. They are all familiar with the basic layout of the
QWERTY keyboard. None of them have experienced text
entry in MR.

5.3.1.2. Hardware setup. A Redmi Note11 running Andriod
11 is used as the touchscreen to run the input program. The
screen size is 6.6-inch and measures 163.56� 75.78mm. A
PICO4 is used to display the visual feedback and the input
box. MR HMDs and mobile phones communicate using
sockets. When the user touches a key on the phone, the MR
HMDs give the appropriate feedback. The programs are
developed in C# in Unity 2021.3.

5.3.1.3. Task and procedure. This study consisted of five
sessions, and all participants were required to attend five
sessions. The task was to enter 10 phrases in each session.
The order of the sessions was counterbalanced across partic-
ipants, and phrases in each session were randomly generated
from the Mackenzie phrase set (MacKenzie & Soukoreff,
2003). Participants were asked to enter the text “quickly and
accurately.” As shown in Figure 4, The experimental envir-
onment was a virtual classroom where the target phrase was
written on a virtual blackboard directly in front of the user.
The user’s initial line of sight, the keyboard display area,
and the target phrase were in a straight line. Users can
reduce the occlusion by moving their heads. Session 1 is the
baseline with none-occlusion (Figure 4a). Session 2 is with a
full QWERTY keyboard (Figure 4b). Session 3 is with a

Figure 2. The underlying keyboard model on mobile phone.

Figure 3. Partial keyboard is visualized in (a) and spatial landmarks are visualized in (b).
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transparent QWERTY keyboard with 50% transparency
(Figure 4c). Session 4 is with our partial keyboard (Figure
4d). Session 5 adds the spatial landmarks to the visualization
of Session 4 (Figure 4e). Before the whole study, we intro-
duced how to enter text using our device, and participants
were given 5min to get familiar with the interaction of the
keyboard. Before each session, participants were required to
complete one phrase exercise. After each session, partici-
pants were required to fill out the NASA-TLX questionnaire
(Hart, 2006). Each session took around 5min for each par-
ticipant. In total, 5 (sessions) � 10 (phrases) � 16 (partici-
pants) ¼ 800 phrases of data were collected. The study has
been approved by the Biology and Medical Ethics
Committee of our university.

5.3.1.4. Metrics. We measure the speed of text entry by cal-
culating the number of words per minute (WPM)
(MacKenzie, 2013) with Equation 1:

WPM ¼ jTj − 1
S

� 60� 1
5

(1)

Where T is the target phrase, and S is the time (in sec-
onds) taken between the first and last press in each phrase.

The error rate of text input is measured by the total error
rate (TER) with Equation 2 and the not corrected error rate
(NCER) (Soukoreff & MacKenzie, 2003) with Equation 3:

NCER ¼ INF þ IF
C þ INF þ IF

� 100% (2)

TER ¼ INF
C þ INF þ IF

� 100% (3)

Where INF represents the number of incorrect but
uncorrected characters, which is calculated by the shortest
edit distance between the input phrase and the target phrase;
IF represents the number of incorrect but corrected charac-
ters, which is calculated by recording the number of times
that the user pressed the delete key during the text entry
process; and C represents the number of correct characters,
which can be approximated as C þ INF ¼ jTj:

5.3.2. Results
We performed statistics on WPM, NCER, TER, and NASA-
TLX scores for each session. The Shapiro-Wilk test was used
to assess the normality of the data distribution. All the data
conform to a normal distribution and are analyzed with
ANOVA. We used Bonferroni correction in pair-wise com-
parisons and Greenhouse-Geisser adjustment in violations of
the spherical hypothesis. The following are the results of the
analysis.

Figure 4. In this study, the user’s initial line of sight, the visual feedback display area, and the target phrase are in a straight line. There are five different keyboard
interfaces as visual feedback: (a) without visual feedback and no occlusion; (b) with a full QWERTY keyboard, which provides visual feedback but is fully occluded;
(c) with a transparent full QWERTY keyboard, which provides visual feedback; (d) with a partial keyboard, which provides visual feedback; (e) adding spatial land-
marks to (d).
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5.3.2.1. Typing speed. No significant effect is found in the
comparison of Session 1 vs Session 2 vs Session 3
(F2, 30 ¼ 2:89, p ¼ :0568, g2p ¼ :162). Significant interaction
effects are found in the comparison of Session 1 vs Session 4
(F1, 15 ¼ 26:91, p ¼ 3:81� 10−7, g2p ¼ :642) and Session 1 vs
Session 5 (F1, 15 ¼ 69:34, p ¼ 2:49� 10−15, g2p ¼ :822), indi-
cating that visual feedback can help users improve their typing
efficiency. Significant interaction effects are found in the com-
parison of Session 2 vs Session 4 (F1, 15 ¼ 18:28,
p ¼ 2:52� 10−5, g2p ¼ :549) and Session 2 vs Session 5
(F1, 15 ¼ 57:19, p ¼ 4:29� 10−13, g2p ¼ :792), indicating that
our partial keyboard method in visual occlusion processing is
superior to the full keyboard method. Significant interaction
effects are also found in the comparison of Session 3 vs
Session 4 (F1, 15 ¼ 11:17, p ¼ :0009, g2p ¼ :427) and Session 3
vs Session 5 (F1, 15 ¼ 45:01, p ¼ 8:98� 10−11, g2p ¼ :750), indi-
cating that our partial keyboard method is also superior to the
transparent keyboard method. Significant interaction effects
are found in the comparison of Session 4 vs Session 5
(F1, 15 ¼ 8:56, p ¼ :0037, g2p ¼ :363), indicating that border
and position indication have a significant effect on speed
improvement.

Figure 5 shows the mean typing speed of the five ses-
sions. Session 1 has the lowest mean typing speed of 20.98
WPM (s.e. ¼ 5.30), while Session 5 has the fastest mean
typing speed of 26.08 WPM (s.e. ¼ 5.64), which is 24%
faster. The difference in typing speed among Session 1,
Session 2, and Session 3 is insignificant, and all are relatively
low. Session 1 has no visual feedback, while Session 2 has
the full keyboard for visual feedback but blocks the target
phrase. Session 3 uses a transparent keyboard to reduce the
occlusion of the target phrase, but the occlusion remains.
The transparent keyboard may not be clear enough for
some users. Typing speed was also improved in Session 5
compared to Session 4, where spatial landmarks can
resolve the visual confusion caused by partial keyboard
movement.

5.3.2.2. Error rate. For NCER, no significant interaction
effect is found in the comparison of Session 1 vs Session 2

vs Session 3 vs Session 4 vs Session 5 (F4, 60 ¼ 2:34,
p ¼ :054, g2p ¼ :135), indicating that the NCER difference
between the five Sessions was not significant. For TER, sig-
nificant interaction effects are found in the comparison
of Session 1 vs Session 2 (F1, 15 ¼ 107:7,
p ¼ 6:35� 10−22, g2p ¼ :878), Session 1 vs Session 3
(F1, 15 ¼ 113:5, p ¼ 7:18� 10−23, g2p ¼ :883), and Session 1 vs
Session 4 (F1, 15 ¼ 30:08, p ¼ 8:48� 10−8, g2p ¼ :667), indi-
cating that the inclusion of visual feedback can significantly
reduce the error rate. In addition, a significant interaction
effect is found in the comparison of Session 4 vs Session 5
(F1, 15 ¼ 5:35, p ¼ :0213, g2p ¼ :263), indicating that spatial
landmarks can further reduce the error rate.

Figure 6 shows the mean NCER and mean TER for the
five sessions. The mean NCER and mean TER for Session 1
are both the highest at 1.59% (s.e. ¼ 2.35%) and 9.00% (s.e.
¼ 5.87%), while the mean NCER and mean TER for Session
3 are both the lowest at 0.98% (s.e. ¼ 1.93%) and 3.37%
(s.e. ¼ 3.19%). In addition, the average NCER for sessions
1–5 were very similar and low, because we added SymSpell,
whose word correction function helps reduce NCER. For
TER, Session 3 with the transparent keyboard is the lowest,
while Session 1 does not add any visual feedback, resulting
in a high error rate. The error rate of the partial keyboard is
somewhere in between.

5.3.2.3. Workload. Figure 7a shows the mean NASA-TLX
workload scores for the five sessions. A significant effect is
found in the comparison of Session 1 vs Session 2
(F1, 15 ¼ 8:46, p ¼ :0068, g2p ¼ :361), indicating that the full
keyboard method increases the workload compared to none-
occlusion method, probably because the full keyboard
obscures the target phrase to the user’s discomfort, even
though the full keyboard method is superior to none-occlu-
sion method in terms of speed. No significant effect is found
in the comparison of Session 2 vs Session 3
(F1, 15 ¼ 2:39, p ¼ :132, g2p ¼ :138), indicating that transpar-
ent keyboards didn’t give users a more favorable
experience. The partial keyboard can significantly reduce the
workload compared to none-occlusion (Session 1 vs Session
4: p ¼ 6:64� 10−5), full keyboard (Session 2 vs Session 4:
p ¼ 8:85� 10−8) and transparent keyboard (Session 3
vs Session 4: p ¼ 1:86� 10−6). In addition, the
inclusion of boundaries and position indication can also sig-
nificantly reduce the workload (Session 4 vs Session 5: p ¼
.0093).

Figure 7b shows the mean scores of each NASA-TLX
dimension. Session 5 is the most preferred method in terms
of all dimensions. For “Mental Demand” and
“Performance,” Session 1 is the least preferred method
because it does not have any visual feedback, which makes
users feel insecure when typing. For “Physical Demand,”
“Effort” and “Frustration,” Session 2 is the least preferred
method. For “Temporal Demand,” Session 3 is the least pre-
ferred method. This may be due to the keyboard blocking
the user’s view, making users feel unpleasant.

Figure 5. Mean WPM of the five sessions. Error bars indicate standard devi-
ation. The dashed line indicates the trend of data change. Asterisks denote stat-
istical significance between sessions.

INTERNATIONAL JOURNAL OF HUMAN–COMPUTER INTERACTION 7



5.3.3. Discussion
From the above results, we find that text entry with none-
occlusion does not obscure the vision, but its speed and
accuracy are poor. On the other hand, the full keyboard
gives visual feedback to the user, but it obscures the vision
and has a low error rate but not a high speed. From the
NASA-TLX results, it appears that these three methods lead
to user dissatisfaction. Participants claimed that text entry
without visual feedback gives the best visual experience, with
no occlusion of the target phrase, but makes typing insecure.
On the other hand, the full keyboard completely obscures
the target phrase, which requires them to make frequent
sight switches while typing. In addition, some users indi-
cated that they still averted their eyes when performing
Session 3 as they did in Session 2, and others indicated that
the transparent keyboard was indeed much better than the
opaque full keyboard, but the occlusion was still there.
Previous study has also shown that transparent keyboards
aren’t as good as they’re cracked up to be. In practice, it is
not easy to get the right opacity for different background
variations. The overlay design may also cause the main view

and the keyboard view to interfere with each other (Sun
et al., 2019).

Compared to the previous three methods, our partial key-
board is a compromise. It not only provides the user with
proper visual feedback, but also ensures that it does not
completely obscure the user’s view. Regarding typing speed,
our partial keyboard method is far superior to the above
three methods. The error rate is similar to the full keyboard
method. Participants said the moving partial keyboard was
interesting to them, and the typing experience was better
than the first three sessions. When it comes to the difference
in experience between Session 4 and Session 5, participants
claimed since the keyboard boundaries were not visible, the
method in Session 4 would cause confusion. After adding
simple dots and lines for indication, this confusion was
almost eliminated.

6. Underlying keyboard optimization

In this section, we present an optimization algorithm for the
underlying keyboard that performs intra-block optimization

Figure 6. (a) Mean NCER, (b) mean TER of the five sessions. Error bars indicate standard deviation. The dashed line indicates the trend of data change. Asterisks
denote statistical significance between sessions.

Figure 7. (a) Mean WORKLOAD of the five sessions; (b) mean score of each NASA-TLX dimension. The dashed line indicates the trend of data change. Asterisks
denote statistical significance between sessions.
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based on users’ eyes-free typing data. We designed a pilot
user study to evaluate the performance of our algorithm.

6.1. Division of keyboard blocks

Since our method is based on two-thumb typing, it inevit-
ably involves the left-hand and right-hand areas of the key-
board. Generally, QWERT/ASDF/ZXCV is in the left-hand
area; YUIOP/GHJKL/BNM is in the right-hand area. We
then split the left-hand and right-hand areas separately
according to the keyboard line, so it forms six keyboard
blocks, as shown in Figure 8. According to the definition of
keyboard blocks, we adopt the keyboard optimization strat-
egy of “intra-block modification,” which means for each
block, the position and size are fixed. The size of the keys
within each block is determined by the ratio of the evalu-
ation values within the block. This is done so as not to des-
troy the relative positions of the keys. As mentioned earlier,
the eyes-free input relies heavily on the muscle memory of
the fingers for the keyboard. If the relative positions of the
keys are destroyed too severely, it inevitably leads to a
decrease in input efficiency and an increase in the error
rate.

6.2. Intra-block optimization algorithm

We propose a keyboard optimization algorithm to improve
the typing speed and accuracy. Based on the collected typing
data, we first calculate the center point offset, which indi-
cates how much each key is offset relative to the standard
layout of the QWERTY keyboard on the X-axis. As well as
using the 95% confidence ellipse for each key to calculate
the error touching rate, which indicates how much each key
is interfered with by other keys. We then use the Entropy
Weighting Method (Y. Zhu et al., 2020) to obtain the
weights of the above two parameters and obtain the
weighted evaluation value of each key. Based on the evalu-
ation value of each key, we scale the size of each key within
the block proportionally to get the width.

The underlying keyboard optimization algorithm is
shown in Algorithm Algorithm 1. Given keys of the key-
board K, blocks of the keyboard B, typing data Xt, standard
key data X, key width W, optimized key width Wo is calcu-
lated. Since the user is holding the phone horizontally dur-
ing text input, we take the horizontal as the x-axis and the
vertical as the y-axis, and the offset of the touch point on
the y-axis is minimal and almost negligible. Therefore, we

only considered the data on the X-axis when designing the
algorithm.

Algorithm 1 Underlying keyboard optimization algorithm

Input: keys of the keyboard K, blocks of the keyboard B,
typing data Xt, standard key data X, key width W
Output: optimized key width Wo

1: for ki 2 K do ΔXi←MeanðXtiÞ−Xi

2: end for
3: for kikj 2 KñK do
4: if isIntersectðki, kjÞ then sij←areaij �
ðsumij=nÞ, Si← Si þ sij

5: end if
6: end for
7: fw1,w2g←EWMðnormalðΔXiÞ, normalðSiÞÞ
8: for ki 2 K do Fi←w1 � normalðΔXiÞ þ w2 � normalðSiÞ
9: end for
10: for bj 2 B do Fbj←sumðF, jÞ,Wbj←sumðW, jÞ
11: end for
12: for kibj 2 KñB do
13: if ki 2 bj then Woi←Wbj � ðFi=FbjÞ
14: end if
15: end for
16: return Wo

In Algorithm 1, we first calculate the average value of the
collected typing data for each key on the X-axis MeanðXtiÞ,
and then subtract the position of each key on the standard
QWERTY keyboard layout Xi to obtain the centroid offset
DXi (line 1). We then sum up the approximate intersection
area of the 95% confidence ellipse between each key and the
other keys as the error touching rate Si (lines 2–3), where
isIntersect indicates that there is an intersection between the
touch ranges of two keys ki and kj, areaij denotes the area of
the smallest rectangle that can cover the confidence ellipses
of ki and kj, sumij=n approximately indicates the percentage
of intersection area in areaij. To do this, we cast nðn ¼
1, 000, 000Þ points randomly within areaij, and sumij denotes
the number of points in the intersection area, and the points
in the intersection area should satisfy Equation 4.

X0
randomi

Y 0
randomi

� �
¼ coshi �sinhi

sinhi coshi

� �−1
� Xrandomi

Yrandomi

� �
X0
randomj

Y 0
randomj

" #
¼ coshj �sinhj

sinhj coshj

� �−1
� Xrandomj

Yrandomj

� �
X0
randomi

2=a2i þ Y 0
randomi

2=b2i � 1
X0
randomj

2=a2j þ Y 0
randomj

2=b2j � 1

8>>>>>>>>><
>>>>>>>>>:

(4)

Figure 8. The standard QWERTY keyboard is divided into six blocks.
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where h is the offset angle of the confidence ellipse, a and b
are the lengths of the long and short axes of the ellipse,
respectively. Xrandom and Yrandom are the locations of ran-
domly cast points within the range of areaij. X0

random and
Y 0
random are the values of Xrandom and Yrandom in the corre-

sponding elliptical coordinate system.
Next, we calculate the weights of center point offset w1

and error touching rate w2 by using the Entropy Weighting
Method (line 4). Based on these weights, we calculate the
evaluation value Fi of each key (line 5) and the sum of
evaluation values and widths of each block (line 6), where
sum (F, j) denotes the total evaluation value Fbj of the block
bj and sum (W, j) denotes the total width Wbj of the block
bj. Finally, we redistribute the width of each key Woi pro-
portionally within the block bj (lines 7–9).

6.3. Data collection and optimization results

6.3.1. Eyes-free typing data collection
This study aims to obtain users’ eyes-free typing data for
further analysis. Many previous studies (Leng et al., 2022; Y.
Lu et al., 2017; S. Zhu et al., 2019) have analyzed users’
eyes-free typing data, but none of the current work
addresses two-thumb eyes-free typing on touchscreen.

6.3.1.1. Participants. Ten participants (seven males and
three females, aged 21–25) from our university were
recruited for this study. They are all familiar with the basic
structure of the QWERTY keyboard.

6.3.1.2. Hardware setup. A Redmi Note11 running Andriod
11 is used to run the input program. The screen size of the
mobile phone is 6.6-inch and measures 163.56� 75.78mm.
A Honor MagicBook 2019 laptop with an AMD RYZEN 7
processor and AMD Radeon(TM) RX Vega 10Graphics
graphics card is used to collect the data. The screen size of

the laptop is 14 inches, and the resolution is 1920�1080.
The programs are developed in C# in Unity 2021.3.

6.3.1.3. Task and procedure. We use a Wizard of Oz testing
(Dahlb€ack et al., 1993). The users do not have to care
whether they hit the right key, and we always give the cor-
rect output. The user was asked to sit about 0.5m away
from the laptop screen to type using the mobile phone, and
we asked the user to type using two thumbs and try to focus
on the computer screen rather than the phone while typing.
The task was to enter 10 phrases, which were randomly gen-
erated from the Mackenzie phrase set (MacKenzie &
Soukoreff, 2003).

6.3.1.4. Data analysis. We collected typing data for 100
phrases. For each key, we removed outliers that were more
than three times the standard deviation away from the col-
lected centroid in either X or Y dimension. The result is as
follows:

Figure 9 shows the distribution of the touch points col-
lected in this study. The ellipse corresponding to each but-
ton covers it with 95% confidence. The blue dot is the
center of each key, while the red dot is the center of the
95% confidence ellipse for each key. The light-blue portion
indicates the overlap between the keys. It is easy to see that
the touch points are pretty chaotic, with considerable over-
lap between keys. However, the layout of the 95% confi-
dence ellipse formed by the touch points is essentially the
same as the layout of the QWERTY keyboard key center
points, and the average center point offset is calculated to be
about 2.1 cm on the X-axis and about 0.3 cm on the Y-axis.
That is, the center point offsets are small overall, indicating
that users can transfer the spatial and muscle memory they
have developed on the visible QWERTY keyboard to the
eyes-free input.

In summary, the offset of the touch points demonstrates
the feasibility of users performing eyes-free typing on a
smooth touchscreen surface. However, the key-to-key over-
lap also suggests the need for reasonable visual feedback for
correction and optimization of the underlying keyboard.

6.3.2. Optimization results
Using the eyes-free typing data and processing it with the
algorithm of subsection 6.2, we obtain the final optimization

Figure 9. 95% confidence ellipse of user touch points.

Table 1. The width ratio of keys in each block.

Blocks Width ratio of keys

block1 Q-0.75 W-1.25 E-1.20 R-1.00 T-0.80
block2 Y-1.35 U-1.10 I-0.85 O-0.90 P-0.80
block3 A-0.85 S-0.70 D-1.10 F-1.35 –
block4 G-1.40 H-0.90 J-0.95 K-1.00 –
block5 Z-0.90 X-0.80 C-0.80 V-1.50 –
block6 B-1.00 N-1.15 M-0.85 – –
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results. Table 1 shows the width ratio of each key after the
algorithm optimization (the size of the key before modifica-
tion is 1). Figure 10 visualizes the variation of the key
widths within the block. It is easy to see that each block fol-
lows the rule that keys near the center of the keyboard are
larger and keys near the edge of the keyboard are smaller.
After expanding the A, L, Z, and M keys to the edge of the
screen, it will eventually appear: it is larger on both sides
and smaller in the middle for each block. When we are
ready to type, the natural position of our thumbs is in the
middle of the block, and when we want to type, the keys in
the middle of each block are easier to touch, while the keys
in the positions on the sides are harder to touch. Thus, the
“big-small-big” arrangement fits our typing habits.

6.4. Pilot user study 2: Evaluate underlying keyboard
optimization algorithm

In this section, we design a user study to evaluate the per-
formance of our underlying keyboard optimization. We
compare the keyboard optimized by our algorithm with the
keyboard optimized by the absolute algorithm of Blindtype
(Y. Lu et al., 2017) and the standard keyboard. In addition,

we compare the performance of these different underlying
keyboards in two cases: with the partial keyboard as visual
feedback and without any visual feedback. We use this study
to prove that our algorithm can improve users’ typing
efficiency.

6.4.1. User study design
6.4.1.1. Participants, hardware setup and metrics. The same
16 participants from pilot user study 1 participated in this
study. The hardware setup and test methodology of this
study were also the same as that of pilot user study 1.

6.4.1.2. Task and procedure. The experiment used a 2� 3
within-subjects design, i.e. all participants were required to
attend six sessions. The task was to enter 10 phrases in each
session. The order of the conditions was counterbalanced
across participants, and phrases in each session were ran-
domly generated from the Mackenzie phrase set (MacKenzie
& Soukoreff, 2003). Participants were asked to enter the text
“quickly and accurately.” There are two conditions we need
to consider. Condition 1 has two options: with and without
visual feedback. Condition 2 has three options: with the
standard QWERTY underlying keyboard, with the underly-
ing keyboard optimized by Blindtype’s algorithm, and with
the underlying keyboard optimized by our algorithm. We
label the sessions according to different combinations of
conditions. Sessions 1,3,5 are without any visual feedback
(shown in Figure 11a,c,e), and Sessions 2,4,6 are with partial
keyboard for visual feedback (shown in Figure 11b,d,f).
Session 1 and 2 are with standard QWERTY as underlying
keyboard (shown in Figure 11a,b); Sessions 3 and 4 are with
the keyboard optimized by Blindtype’s algorithm (shown in
Figure 11c,d); Sessions 5 and 6 are with the keyboard opti-
mized by our algorithm (shown in Figure 11e,f). Each ses-
sion took around 5min for each participant. Data for a total
of 2(visual feedback) �3(underlying keyboard) �10(phrases)
�16(participants) ¼ 960 phrases were collected. The studyFigure 10. The underlying keyboard model after key-width optimization.

Figure 11. Different combinations of conditions for the six sessions. The top left corner of each Sub-figure shows the display interface, which is divided into “eyes-
free” and “partial keyboard,” and the top right corner shows the underlying keyboard interface, which is divided into “standard keyboard,” “Blindtype’s keyboard”
and “our keyboard.”.
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has been approved by Biology and Medical Ethics
Committee of our university.

6.4.2. Results
We performed statistics on WPM, NCER, and TER for each
session. The Shapiro-Wilk test was used to assess the nor-
mality of the data distribution. All the data conform to a
normal distribution and are analyzed with ANOVA. We
used Bonferroni correction in pair-wise comparisons and
Greenhouse-Geisser adjustment in violations of the spherical
hypothesis. The following are the results of the analysis.

6.4.2.1. Typing speed
The ANOVA results showed that “visual
feedback”(F1, 15 ¼ 42:91, p ¼ 3:51� 10−10, g2p ¼ :741) and
“underlying keyboard” (F2, 30 ¼ 5:1, p ¼ :0068, g2p ¼ :254)
have a significant effect on the typing speed, indicating that
the addition of the partial keyboard and the underlying key-
board optimization algorithm has a significant effect on the
typing speed. Significant interaction effects are found in
Session 2 vs Session 6 (F1, 15 ¼ 11:65, p ¼ :001, g2p ¼ :437),
and Session 4 vs Session 6 (F1, 15 ¼ 4:44, p ¼ :0383,
g2p ¼ :228), indicating that our optimization algorithm

improves significantly with partial keyboard. The two meth-
ods complement each other. In contrast, no significant
effects are found in the comparison of Session 1 vs Session
5 (F1, 15 ¼ 2:31, p ¼ :132, g2p ¼ :133) and Session 3 vs Session
5 (F1, 15 ¼ :98, p ¼ :324, g2p ¼ :061), shows that the algorithm
is not very effective with no visual feedback.

Figure 12 shows the mean typing speed for the six ses-
sions. Session 1 has the lowest mean typing speed of 21.45
WPM (s.e. ¼ 5.5), while Session 6 has the fastest mean typ-
ing speed of 28.44 WPM (s.e. ¼ 4.91). The mean typing
speed of Session 1 vs Session 3 and Session 2 vs Session 4 is
almost the same, which indicates that Blindtype’s keyboard
optimization algorithm may not apply to the two-thumb
typing method, and the optimized keyboard does not differ
much from the default keyboard. The typing speed of
Session 5 is the fastest in Sessions 1, 3, and 5, and the typing
speed of Session 6 is the highest in Sessions 2, 4, 6. In par-
ticular, Session 6 was significantly higher than Session 4 and
Session 2, indicating that our algorithm can improve typing
speed with the partial keyboard.

6.4.2.2. Error rate
For NCER, no significant interaction effects are found in
both “visual feedback” (F1, 15 ¼ 1:54, p ¼ :2153, g2p ¼ :093)
and “underlying keyboard” (F2, 30 ¼ :18, p ¼ :833, g2p ¼ :012).
Indicating that the NCER has little relationship with the vis-
ual feedback. For TER, “visual feedback” (F1, 15 ¼ 32:47,
p ¼ 3:56� 10−8, g2p ¼ :684) has a significant effect, while
“underlying keyboard” (F2, 30 ¼ 1:74, p ¼ :178, g2p ¼ :104) has
no significant effect. Meanwhile, no significant interaction
effects are found in Session 1 vs Session 3 vs Session 5
(F2, 30 ¼ 1:68, p ¼ :191, g2p ¼ :101) and Session 2 vs Session 4
vs Session 6 (F2, 30 ¼ :54, p ¼ :584, g2p ¼ :035). This indicates
that the main factor influencing the error rate is the visual
feedback and is less related to the underlying keyboard.

Figure 13 shows the mean NCER and TER for the six
sessions. For NCER, they are all very low due to the inclu-
sion of word prediction and correction in each session. For
TER, including the partial keyboard for visual feedback sig-
nificantly reduced the error rate. In addition, the difference

Figure 12. Mean WPM of the six sessions. Error bars indicate standard devi-
ation. The dashed line indicates the trend of data change. Asterisks denote stat-
istical significance between sessions.

Figure 13. (a) Mean NCER and (b) mean TER of the six sessions. Error bars indicate standard deviation. The dashed line indicates the trend of data change.
Asterisks denote statistical significance between sessions.
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between the default keyboard and the Blindtype algorithm-
optimized keyboard is insignificant. And the error rate of
our algorithm-optimized keyboard is very low, only 3.78%
(s.e. ¼ 2.68%).

6.4.3. Discussion
Our underlying keyboard optimization algorithm can
improve efficiency and accuracy with or without visual feed-
back. In addition, Session 2 shows a 21% increase in typing
speed compared to Session 1. In contrast, Session 5 shows
an 8% increase in typing speed compared to Session 1. The
partially visible keyboard is the root cause of the increase in
typing speed. This is because the partially visible keyboard
provides the user with visual feedback while increasing the
user’s confidence when typing, and optimizing the underly-
ing keyboard still doesn’t address the central issue of visual
feedback. However, the underlying keyboard optimization
algorithms still help with typing speed improvement because
it reduce the probability of keystroke errors and make typ-
ing more comfortable for the user. Session 6 shows a 33%
increase in typing speed compared to Session 1. Two opti-
mizations can help users increase typing speed at the same
time. Our partial keyboard and optimization algorithm work
well together.

From the above results, it is easy to see that Blindtype’s
absolute algorithm does not perform well for two-thumb
typing. When using Blindtype’s algorithm to optimize the
underlying keyboard, the optimized keyboard does not differ
much from the default keyboard. This is because the
Blindtype algorithm scales the overall keyboard only based
on the centroid offset of each key, and it is a one-thumb
typing method which does not fully consider the key blocks
of the keyboard. In contrast, our algorithm combines the
three factors: centroid offset, error touching rate, and key
blocks, which obtain a significant performance improve-
ment. Many participants claimed it was easier to type in
Session 5 and Session 6. Especially during fast typing, there
are significantly fewer cases of wrong touching.

7. User study: Evaluate performance and
learnability in the MR environment

Our approach supports both VR and MR. Pilot user study 1
and pilot user study 2 were conducted in a VR environment
(virtual classroom). In this user study, we focus on MR
scenarios. We conduct a 5-day user study to evaluate the
performance and learnability of our Partially Visible
Keyboard and explore how the performance of two groups,
the novice group and the potential expert group, would
improve in a 5-day practice. We use the same hardware
setup as the pilot user study.

7.1. User study design

7.1.1. Participants
Eight participants (five males and three females, aged 21–25)
were recruited to conduct the user study. We divided them

into two groups: a novice group and a potential expert
group. None of the participants in the novice group have
participated in the pilot user study, and none of them have
experienced text entry in MR. The participants in the expert
group were from the pilot user study. We ranked all partici-
pants from the pilot user study based on their performance,
selected the top four best performers, and invited them to
continue participating in the 5-day study to form the poten-
tial expert group.

7.1.2. Task and procedure
The entire study consisted of five sessions, one for each day.
For all users, the task was to enter 10 phrases in the MR
environment, and phrases in each session were randomly
generated from the Mackenzie phrase set (MacKenzie &
Soukoreff, 2003). Participants were asked to enter the text
“quickly and accurately.” For novice users, We showed them
how to use our method for input and gave them 5min to
try it out before the session started. Each session took
around 5min for each participant. Data for a total of 4 (par-
ticipants) � 2 (groups) � 5 (sessions) � 10 (phrases) ¼ 400
phrases were collected. The study has been approved by the
Biology and Medical Ethics Committee of our university.

7.2. Results

We performed statistics on WPM, NCER, and TER for each
session. The Shapiro-Wilk test was used to assess the nor-
mality of the data distribution. All of the data conform to a
normal distribution. We used ANOVA for analysis, with
“session” (1–5) as the within-subjects variable and “group”
(novice and potential expert) as the between-subjects vari-
able. We used Bonferroni correction in pair-wise compari-
sons and Greenhouse-Geisser adjustment in violations of the
spherical hypothesis. The following are the results of the
analysis.

7.2.1. Typing speed
The ANOVA results show that “group” (F1, 4 ¼ 17:01,
p ¼ :0033, g2p ¼ :809) and “session” (F4, 28 ¼ 3:05, p ¼ :0296,
g2p ¼ :303) both have a significant effect on typing speed.
There is a significant difference in typing speed within five
days, with the potential expert group typing at a significantly
higher speed than the novice group. Within the potential
expert group, significant interaction effects are found only
for sessions 1vs4 and 1vs5 (both p < .05). Within the novice
group, significant interaction effects are found for sessions
1vs2, 1vs3, 1vs4, 1vs5, 2vs4, 2vs5, 3vs5, and 4vs5 (all p <
.05). This indicates that the two groups have significantly
different learning effects, with the novice group showing a
much greater increase in typing speed than the potential
expert group. After five days of training, the learning curve
of the novice group was still increasing.

Figure 14a shows the mean typing speed of the 8 partici-
pants. The mean speed of the 8 participants for all sessions
over five days is 25.20 WPM. The average speed of all par-
ticipants is 22.01 WPM (s.e. ¼ 4.71) in the first test and
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reached 28.42 WPM (s.e. ¼ 2.61) in the last test, an increase
of 29.12%. The fastest speed is reached by the participant
from the potential expert group in the fifth session, reaching
32.88 WPM, while its typing speed on the first day is only
25.28 WPM, which is the lowest among the potential expert
group. Figure 14b shows the average typing speed of the
two groups in each session. The average speed of the novice
group is 21.99 WPM (s.e. ¼ 3.09), while the average speed
of the potential expert group is 28.41 WPM (s.e. ¼ 1.60).
The speed of the potential expert group increased from
26.22 WPM (s.e. ¼ 1.14) in the first session to 30.62 WPM
(s.e. ¼ 1.61) in the last session, an increase of 16.78%. And
the speed of the novice group increase from 17.80 WPM
(s.e. ¼ 1.79) in the first session to 26.23 WPM (s.e. ¼ 0.69),
an increase of 47.36%.

7.2.2. Error rate
For NCER, no significant effects are found in both
“group”(F1, 4 ¼ 4:96, p ¼ :0566, g2p ¼ :554) and “session”
(F4, 28 ¼ 1:48, p ¼ :334, g2p ¼ :175). For TER, no significant
effects are found in “group” (F1, 4 ¼ 4:17, p ¼ :0754,
g2p ¼ :510) and “session” (F4, 28 ¼ 1:45, p ¼ :343, g2p ¼ :172),
indicating that the number of training days does not have a
significant effect on error rate.

Figure 15 shows the mean NCER and TER for the novice
group and the potential expert group for five sessions. The
mean NCER for all sessions over five days for the 8 partici-
pants is 0.89% and the mean TER is 3.24%. For the mean
NCER, it is 0.72% (s.e. ¼ 0.21%) for the novice group and
1.06% (s.e. ¼ 0.27%) for the potential expert group. For the
mean TER, it is 2.88% (s.e. ¼ 0.45%) for the novice group
and 3.60% (s.e. ¼ 0.64%) for the potential expert group. We
also find that both TER and NCER of the potential expert
group are higher than those of the novice group. This may
be due to their faster typing speed, which increases the
probability of typing errors. Moreover, as the typing speed
of the novice group users increases, their error rate also
increases slightly.

7.3. Discussion

We compare our Partially Visible Keyboard with the state-
of-the-art touchscreen-based input methods i’s Free (S. Zhu
et al., 2019) and Blindtype (Y. Lu et al., 2017).

In terms of typing speed, novice users can reach a speed
of 26.23 WPM, while potential users can reach 30.62 WPM.
i’s Free and Blindtype are also mobile phone touchscreen-
based methods, with a maximum typing speed of 23.27
WPM and 22.77 WPM, respectively. Our method is about
25% faster than theirs. Our partial keyboard provides users
with reasonable visual feedback, and the keyboard optimiza-
tion algorithm allows users to type more naturally, which is
the key to our high typing speed.

In terms of accuracy, the NCER and TER of our method
are low, 0.72% and 2.88% for novice users and 1.06% and
3.60% for potential expert users, respectively. Blindtype’s
personalized relative algorithm has an NCER of 2.19%, a
CER of 5.96%, and a PER (prediction error rate) of 2.26%.
And the error rate of i’s Free is 2.14%. The error rate of our
method is significantly lower than Blindtype and similar to
i’s Free. For accuracy, our method is not inferior to the
most advanced methods either.

In terms of learnability, after 40 phrases of training, the
speed of novice users increased by 47.36% and that of

Figure 14. (a) Mean typing speed of 8 participants and (b) mean typing speed of novice group and potential expert group of 5 days.

Figure 15. Mean NCER and TER of novice group and potential expert group of
5 days.
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potential expert users increased by 16.78%, which indicates
that our text entry method is very user-friendly and easy to
learn. We use a typical mobile phone as the input device
and choose the most familiar two-thumb input as the input
method.

8. Conclusion, limitations, and future work

In this paper, we have proposed a light-occlusion text entry
method, a partial keyboard-based eyes-free text entry
method. We first designed a partial keyboard interface for
visual feedback. Then, we analyze the users’ eyes-free typing
data and propose an underlying keyboard optimization algo-
rithm. Compared to the state-of-the-art touchscreen-based
method, our method is faster and less occluded in MR envi-
ronments. After five training days, novice users reach an
average typing speed of 26.23 WPM, and expert users reach
30.62 WPM. The highest typing speed could reach
32.88 WPM.

Although our method has proven efficient and accurate,
it has certain limitations. First, in some characteristic envi-
ronments, our partial keyboard may obscure the target
phrase and not achieve “none-occlusion.” Second, our
underlying keyboard does not change once it is determined,
while previous research (Shi et al., 2018) shows that the key-
board position and size should be changed over time, and
the text input habits of different users vary somewhat.

In the future, we will improve the following aspects:
First, we can use multi-sensory channel fusion interactions
to remove occlusion. Second, we will use personalization
data to improve the underlying keyboard optimization algo-
rithm so that the underlying keyboard can automatically
adapt to the user’s habits.
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